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 Abstract. The present article concerning the 

mathematical modelling of thermophysical 

processes in the electric arcs of high-current 

tripping devices. The heat conduction equation, 

which takes into account the influence of thermal 

sources in the arc and the effect of shrinkage of the 

axial section of the arc in the cathode region into a 

contact, is one of the tools for describing the 

physics of processes in the arc. The contacts are in 

a closed state at the start of time, and there is no 

domain of problem solution. From a mathematical 

point of view, the problematicity of the problem at 

hand is precisely the presence of a moving 

boundary and the degeneracy of the solution 

domain at the outset.   
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1. INTRODUCTION 

 

Heat conduction was defined as the transfer of 

thermal energy from the more energetic particles of 

a medium to the adjacent less energetic ones. It was 

stated that conduction can take place in liquids and 

gases as well as solids provided that there is no 

bulk motion involved. 

Caputo [1] developed the fractional order 

derivatives of the differential equations and it's 

filters. Povstenko [2,4] solved the Boundary value 

problems using the fractional order derivatives, in 

an infinite medium with a spherical inclusion.  

Ankhmanova et at. [3] Solved a singular integral 

equation of the voltera type and it's adjoint. 

Jenaliyev et at. [5], studied boundary value 

problems of the heat equation in noncylindrical 

domains degenerating at the initial moment leads to 

the necessity of research of the singular Volterra 

integral equations of the second kind, when the 

norm of the integral operator is equal to 1. The 

paper deals with the singular Volterra integral 

equation of the second kind, to which by virtue of 

‘the incompressibility’ of the kernel the classical 

method of successive approximations is not 

applicable. 

 Amangaliyeva et at. [6, 7] established that in an 

infinite angular domain for Dirichlet problem of the 

heat conduction equation the unique (up to a 

constant factor) non-trivial solution exists, which 

does not belong to the class of summable functions 

with the found weight. It is shown that for the 

adjoint boundary value problem the unique (up to a 

constant factor) non-trivial solution exists, which 

belongs to the class of essentially bounded 

functions with the weight found in the work. It is 

proved that the operator of a boundary value 

problem of heat conductivity in an infinite angular 

domain in a class of growing functions is 

Noetherian with an index which is equal to minus 

one. Dzhenaliyec et at. [8] solved the boundary 

value problems of heat conduction equation in an 

unbounded plane. Recently many of fractional 

order heat conduction problems have been 

discussed [9-16]. 

There are presently issues concerning the 

mathematical modelling of thermophysical 

processes in the electric arcs of high-current 

tripping devices. The heat conduction equation, 

which takes into account the influence of thermal 

sources in the arc and the effect of shrinkage of the 

axial section of the arc in the cathode region into a 

contact, is one of the tools for describing the 

physics of processes in the arc.  

The contacts are in a closed state at the start of 

time, and there is no domain of problem solution. 

From a mathematical point, the problematicity of 

the problem at hand is precisely the presence of a 

moving boundary and the degeneracy of the 

solution domain at the outset.  
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2. BASIC DEFINITIONS 

 

 Riemann Liouville Fractional Integral: 

 

The Riemnn-Liouville fractional integral defined 

as: 

 
Where  is any non-negative real number, 

f(x) be piecewise continuous on (a, x) and 

integrable on any finite subinterval of [a, x]. 

 

 Riemann Liouville Fractional Derivative: 

 

 The fractional derivative can be defined 

using the definition of the fractional integral. 

Suppose that on    and n is the 

smallest integer greater than on α . Then the 

fractional derivative of f(x) of order  is: 

 

 

 

 Caputo’s Fractional Derivative: 

 

 The Caputo’s fractional derivative of f(x) 

of order , is 

            

                             where    

 

3. PROBLEM FORMULATION 

    

We consider BVP’s of fractional heat conduction 

in a degenerate domain. 

 

a) In the domain  

 

 it is required to 

find a solution to the equation of fractional heat 

conduction. 

 

                                                   (1) 

with the boundary conditions 

 

                   (2) 

b) In the domain 

 

   it is required to 

find a solution to the equation of fractional heat 

conduction. 

 

                                                   (3) 

 

 with the boundary conditions 

 

              (4) 

c) In the domain 

 it is required to 

find a solution to the equation of fractional heat 

conduction. 

 

                                                   (5) 

with the boundary conditions 

 

                  (6) 

 

d) In the domain 

 it is required to 

find a solution to the equation of fractional heat 

conduction. 

 

                                              (7) 

with the boundary conditions 

                 (8) 

 

4.CONVERSION OF PROBLEMS IN INTEGRAL 

EQUATIONS 

 

We consider a solution of the Problem (a) as the 

sum of the thermal potentials of the double layer  

 

                                                     

   

                                  (9) 

     

 

where Eα β(.) is Mittag-Leffler function of two 

parameters.   

We consider a solution of the Problem (b) as the 

sum of the thermal potentials of the simple layer 

 

  

 

                                       (10)               

 
 

We consider a solution of the Problem (c) as the 

sum of a combination of the thermal potentials of a 

double and a simple layer 
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                                   (11)          

 
 

We consider a solution of the Problem (d) as the 

sum of a combination of the thermal potentials of a 

simple and a double layer 

 

 

 

                                 (12) 

 
 

It is clear that the functions (9)-(12) satisfy the 

heat equation for any  and  [20]. 

 

                           (13) 

where 

 

Problem (c) and (d) are reduced to the integral 

equation: 

 

                           (14) 

 

where 

 

 
 

Singularity of the kernel  of equation (13) 

is determined by the properties 

 

  (15) 

 

By the Carleman-Vekua method, solving the 

integral equation (13) is reduced to solving a 

nonhomogeneous Abel equation. The boundary 

value problems (a) and (b) are studied weight 

spaces, and the classes of uniqueness for their 

solutions. 

       

 

The following theorem is proved. 

 

Theorem 1:    

 

The function 

 
 

where 

 

 
is a solution of the integral equation (13) in the 

weight class of functions  

 

 
 

Singularity of the kernel  of equation (14) 

is determined by the properties 

 

 (16) 

 

In fact, for the kernel  of equation (14) 

making a substitution  we obtain 

 

 
 

4. CONCLUDING REMARK 

 

The singularity of the obtained integral equations 

lies in the equation (15) and (16) of the 

corresponding kernel  and this singularity is 

expressed in the fact that the corresponding 

nonhomogeneous equations cannot be solved by the 

method of successive approximations. Equations 

(15) and (16) indicate the “incompressibility” of the 

kernel of integral equations. The results presented 

here will be more useful in studying the heat 

conduction problem in noncylindrical bodies in 

real-life engineering problems, mathematical 

biology by considering the fractional derivative in 

the field equations. 
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